|
Plutonium (Pu) is an artificial element, except for trace quantities of primordial 244Pu, and thus a standard atomic mass cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are Pu-244, with a half-life of 80.8 million years, Pu-242, with a half-life of 373,300 years, and Pu-239, with a half-life of 24,110 years. All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states, though none is very stable; all meta states have half-lives of less than one second. The isotopes of plutonium range in atomic weight from 228.0387 u (Pu-228) to 247.074 u (Pu-247). The primary decay modes before the most stable isotope, Pu-244, are spontaneous fission and alpha emission; the initial mode after is beta emission. The primary decay products before Pu-244 are isotopes of uranium and neptunium (neglecting the wide range of daughter nuclei created by fission processes), and the primary products after are isotopes of americium. == Notable Isotopes == *Plutonium-238 has a half-life of 87.74 years〔(【引用サイトリンク】publisher=Institute for Energy and Environmental Research )〕 and emits alpha particles. Pure Pu-238 for radioisotope thermoelectric generators that power some spacecraft is produced by neutron capture on neptunium-237 but plutonium from spent nuclear fuel can contain as much as a few percent of Pu-238, from either 237Np, alpha decay of 242Cm, or (n,2n) reactions. *Plutonium-239 is the most important isotope of plutonium, with a half-life of 24,100 years. Pu-239 and Pu-241 are fissile, meaning that the nuclei of its atoms can break apart by being bombarded by slow moving thermal neutrons, releasing energy, gamma radiation and more neutrons. It can therefore sustain a nuclear chain reaction, leading to applications in nuclear weapons and nuclear reactors. Pu-239 is synthesized by irradiating uranium-238 with neutrons in a nuclear reactor, then recovered via nuclear reprocessing of the fuel. Further neutron capture produces successively heavier isotopes. *Plutonium-240 has a high rate of spontaneous fission, raising the background neutron radiation of plutonium containing it. Plutonium is graded by proportion of Pu-240: weapons grade (< 7%), fuel grade (7–19%) and reactor grade (> 19%). Lower grades are less suited for nuclear weapons and thermal reactors but can fuel fast reactors. *Plutonium-241 is fissile, but also beta decays with a half-life of 14 years to americium-241. *Plutonium-242 is not fissile, not very fertile (requiring 3 more neutron captures to become fissile), has a low neutron capture cross section, and a longer half-life than any of the lighter isotopes. *Plutonium-244 is the most stable isotope of plutonium, with a half-life of about 80 million years, long enough to be found in trace quantities in nature. It is not significantly produced in nuclear reactors because Pu-243 has a short half-life, but some is produced in nuclear explosions. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「isotopes of plutonium」の詳細全文を読む スポンサード リンク
|